<pre id="j9nnl"></pre>
        <ruby id="j9nnl"></ruby>
          <pre id="j9nnl"></pre><ruby id="j9nnl"><mark id="j9nnl"></mark></ruby>
          <p id="j9nnl"><mark id="j9nnl"><progress id="j9nnl"></progress></mark></p>

              <p id="j9nnl"><cite id="j9nnl"></cite></p>

                  <ruby id="j9nnl"></ruby>

                  <del id="j9nnl"><dfn id="j9nnl"><th id="j9nnl"></th></dfn></del>

                        <ruby id="j9nnl"><mark id="j9nnl"><thead id="j9nnl"></thead></mark></ruby>
                        <p id="j9nnl"></p>

                        <p id="j9nnl"><mark id="j9nnl"></mark></p>
                          <p id="j9nnl"><del id="j9nnl"><thead id="j9nnl"></thead></del></p>

                          科學研究

                          Research

                          首頁 >  論文  > 詳情

                          Complex System and Intelligent Control Theories and Applications

                          發表會議及期刊:FITEE

                          Jie CHEN ??1,2 , Ben M. CHEN 3,4 , Jian SUN 1

                          1School of Automation, Beijing Institute of Technology, Beijing 100081, China

                          2Tongji University, Shanghai 200092, China

                          3Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong, China

                          4Department of Electrical and Computer Engineering, National University of Singapore, Singapore?

                          E-mail: chenjie@bit.edu.cn 

                          Complex systems are the systems that consist of a great many diverse and autonomous but interacting and interdependent components whose aggregate behaviors are nonlinear. As phased by Aristotle, “the whole is more than the sum of its parts;” properties of complex systems are not a simple summation of their individual parts.

                          Complex systems are widespread. Typical examples of complex systems can be found in the human brain, flocking formation of migrating birds, power grid, transportation systems, autonomous vehicles, social networks, and communication networks.

                          Complex systems have some distinct properties, such as highly nonlinear dynamics, emergence, adaptation, and self-organization, which are difficult to model precisely. Such properties lead to difficulties in understanding the behaviors of complex systems, to model them accurately, to control them, and to make them work in a specific way we desire. There is no generally agreed definition of intelligent control. Generally speaking, intelligent control is a class of control methods that use artificial intelligence techniques, such as fuzzy logic, neural networks, evolutionary computation, machine learning,

                          comm@pjlab.org.cn

                          上海市徐匯區云錦路701號西岸國際人工智能中心37-38層

                          滬ICP備2021009351號-1

                          <pre id="j9nnl"></pre>
                                <ruby id="j9nnl"></ruby>
                                  <pre id="j9nnl"></pre><ruby id="j9nnl"><mark id="j9nnl"></mark></ruby>
                                  <p id="j9nnl"><mark id="j9nnl"><progress id="j9nnl"></progress></mark></p>

                                      <p id="j9nnl"><cite id="j9nnl"></cite></p>

                                          <ruby id="j9nnl"></ruby>

                                          <del id="j9nnl"><dfn id="j9nnl"><th id="j9nnl"></th></dfn></del>

                                                <ruby id="j9nnl"><mark id="j9nnl"><thead id="j9nnl"></thead></mark></ruby>
                                                <p id="j9nnl"></p>

                                                <p id="j9nnl"><mark id="j9nnl"></mark></p>
                                                  <p id="j9nnl"><del id="j9nnl"><thead id="j9nnl"></thead></del></p>
                                                  韩国伦理电影